Math 102

Krishanu Sankar

November 1, 2018

Announcements

- Midterm solutions posted
- Your midterm viewable in Crowdmark.
- Remember, the midterm is an excellent way to practice in preparation for the final exam.
- OSH will require you to reflect on your midterm, I highly urge you to take time to do this.
- Midterm statistics. Both out of 50.
- Version 1: Mean 26.95, Median 28, StdDev 9.312
- Version 2: Mean 28.13, Median 29, StdDev 8.765

Goals Today

- What is a differential equation?
- What's a solution?
- $\frac{d f}{d t}=k f$
- Solving with initial conditions.
- Qualitative Analysis for Autonomous DE's
- Steady States
- Qualitative analysis
- Writing down DE's

Differential Equations

Algebraic equation Differential Equation

$$
\begin{gathered}
2 x+5=0 \\
x^{3}+3 x=2
\end{gathered}
$$

$$
\begin{gathered}
\frac{d f}{d t}=4 f(t)-3 \\
\frac{d f}{d t}-(f(t))^{2}+3 f(t)=0
\end{gathered}
$$

- A differential equation is an equation involving the derivative of a function.
- A solution to a differential equation is any function $f(t)$ which makes the equation true.
- Most typically, differential equations relate $f(t)$ to its derivative. Generally it's hard to find a solution. But it's easy to check whether a given function is a solution or not.

Exercise: Consider the differential equation

$$
\frac{d f}{d t}=2 t
$$

Prove that $f(t)=t^{2}-2$ is a solution.
Exercise: Consider the differential equation

$$
\frac{d f}{d t}=3 f
$$

Prove that $f(t)=4 e^{3 t}$ is a solution.
Here we write f to mean $f(t)$: we have dropped the ' (t) ' from the notation for brevity.

The differential equation $\frac{d f}{d t}=k f$

Let k be a constant. Then the differential equation

$$
\frac{d f}{d t}=k f
$$

has $f(t)=e^{k t}$ as a solution.

The differential equation $\frac{d f}{d t}=k f$

Let k be a constant. Then the differential equation

$$
\frac{d f}{d t}=k f
$$

has $f(t)=e^{k t}$ as a solution.
Question: Can you come up with other solutions? How about a way to describe ALL of the solutions?

The general solution to a DE

$$
\frac{d f}{d t}=2 t
$$

The general solution to this differential equation is $f(t)=t^{2}+C$ where C is an arbitrary constant.

$$
\frac{d f}{d t}=k f
$$

The general solution to this differential equation is $f(t)=C e^{k t}$ where C is an arbitrary constant.

Initial conditions

The general solution to the differential equation

$$
\frac{d f}{d t}=3 f
$$

is $f(t)=C e^{3 t}$ where C may be any constant.
Question: Find the solution to this differential equation satisfying the initial condition

$$
f(0)=\frac{1}{2}
$$

Initial conditions

The general solution to the differential equation

$$
\frac{d f}{d t}=3 f
$$

is $f(t)=C e^{3 t}$ where C may be any constant.
Question: Find the solution to this differential equation satisfying the initial condition

$$
f(0)=\frac{1}{2}
$$

Solution: $f(0)=C \cdot e^{3 \cdot 0}=C \cdot 1=C$. Thus,
$C=\frac{1}{2}$, and it follows that $f(t)=\frac{1}{2} e^{3 t}$.

Among all of the solutions, there's only one that passes through ($0, \frac{1}{2}$), namely $f(t)=\frac{1}{2} e^{3 t}$.

Initial conditions - practice

Question: Find the solution to $\frac{d f}{d t}=-4 f$ satisfying $f(\ln (2))=\frac{1}{6}$.

Question: Find the solution to $\frac{d f}{d t}=-4 f$ satisfying $f(3)=0$.

Steady states

A steady state solution is a solution of the form $f(t)=$ constant. You can find the steady states by setting $\frac{d f}{d t}=0$ and solving.

Qualitative Analysis

We will make a sketch of the solutions to the differential equation

$$
\frac{d f}{d t}=2 f-6
$$

Question: Find all steady states for the differential equation above.

Qualitative Analysis

We will make a sketch of the solutions to the differential equation

$$
\frac{d f}{d t}=2 f-6
$$

Question: Find all steady states for the differential equation above.

Solution: If $f(t)=C$ is a steady state, then $\frac{d f}{d t}=0$.
Thus, $2 C-6=0$, and so $C=3$. Therefore, $f(t)=3$ is the only steady state solution.

Qualitative Analysis

$$
\frac{d f}{d t}=2 f-6
$$

Question: Suppose that $f(0)=2.5$. What is $f^{\prime}(0)$?

Qualitative Analysis

$$
\frac{d f}{d t}=2 f-6
$$

Question: Suppose that $f(0)=2.5$. What is $f^{\prime}(0)$?

$$
f^{\prime}(0)=2 f(0)-6=2(2.5)-6=-1
$$

Qualitative Analysis

$$
\frac{d f}{d t}=2 f-6
$$

Question: Suppose that $f(0)=2.5$. What is $f^{\prime}(0)$?

$$
f^{\prime}(0)=2 f(0)-6=2(2.5)-6=-1
$$

Qualitative Analysis

Question: Consider the differential equation

$$
\frac{d f}{d t}=-3 f+12
$$

Calculate the steady states, and then perform qualitative analysis to sketch the solutions.

Writing a Differential Equation

Question: A drug solution is administered by IV to a patient at a constant rate of $50 \mathrm{ml} / \mathrm{hr}$. At the same time, the drug is metabolized in the body at a rate equal to 0.5 times the volume in the body, per hour.

Let $D=D(t)$ denote the amount of drug in the body at time t. Write down a differential equation for D. Then perform a qualitative analysis on your differential equation.

Recap

- What is a differential equation?
- What's a solution?
- $\frac{d f}{d t}=k f$
- Solving with initial conditions.
- Qualitative Analysis for Autonomous DE's
- Steady States
- Qualitative analysis
- Writing down DE's

